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Abstract

We present a block-structured local refinement method for computing solutions to Poisson�s equation in two and

three dimensions. It is based on a conservative, finite-volume formulation of the classical Mehrstellen methods. This

is combined with finite volume local refinement discretizations to obtain a method that is fourth-order accurate in solu-

tion error, and with easily verifiable solvability conditions for Neumann and periodic boundary conditions.
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1. Introduction

In this paper, we present a fourth-order accurate numerical method for solving Poisson�s equation
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in two or three space dimensions in a rectangular domain with either Dirichlet, Neumann, or periodic

boundary conditions. Our approach uses a conservative, finite-volume, block-structured local refinement

discretization that generalizes the classical Mehrstellen methods [1]. Previously, nodal-point Mehrstellen

discretizations of Poisson�s equation have been combined with local refinement [2]. Unlike those algo-

rithms, the present algorithm preserves discrete conservation form, thus making it compatible to solve cou-
pled hyperbolic-elliptic problems using finite volume approximations for hyperbolic problems on locally

refined grids, along the lines of those in [3]. In addition, the present method has an obvious and easily ver-

ified discretization of the solvability condition for Neumann or periodic boundary conditions for the case of

a general hierarchy of locally refined grids. Such a condition is not known for the nodal-point method cited

above.

Our approach proceeds along the lines of that described in [4–6]. The single-level operator is expressed

in terms of a difference of fluxes on faces, with ghost-cell data interpolated using a combination of coarse

and fine grid values. Neumann matching conditions at the coarse–fine interface are enforced by refluxing
[3], i.e. using the average of the fluxes at the next finer level to compute the flux into coarse cells adjacent

to a coarse–fine interface. In one important respect, we depart from the approach taken in the second-

order algorithm, in the way we compute ghost-cell values. We compute higher-order coarsenings of the

fine grid values onto the coarse grid so as to interpolate using values from a fixed stencil. In contrast, the

methods cited above use stencils that depend on the local distribution of coarse and fine grids, so as to

maintain the required level of accuracy while not using coarse-cell values that are covered by finer cells.

In order to reduce the complexity of our coarsening process, we require the ratio between mesh spacings

at successive refinement levels to be an even number no less than four. The resulting method has a trunc-
tion error that is fourth-order in the mesh spacing at all cells except those adjacent to the boundary be-

tween refinement levels. In the latter case, the truncation error is third-order in the mesh spacing. In

numerical experiments, we observe solution errors that are fourth-order in the mesh spacing, uniformly

in space, consistent with the modified equation analysis in [6,7]. We also observe some superconvergence

in this method. In particular, we can use a fourth-order accurate interpolant for the ghost cell values, and

still obtain fourth-order accuracy in the solution, even though the truncation error is second-order on a

set of codimension one.
2. Notation and calculus identities

The underlying discretization of D-dimensional space is given as points ði0; . . . ; iD�1Þ ¼ i 2 ZD. The prob-

lem domain is discretized using a grid C � ZD that is a bounded subset of the lattice. C is used to represent a

cell-centered discretization of the continuous spatial domain into a collection of control volumes: i 2 C rep-

resents a region of space,
V i ¼ ½ih; ði þ uÞh�; ð2Þ
where h is the mesh spacing, and u 2 ZD is the vector whose components are all equal to one. We can also

define face-centered discretizations of space based on those control volumes: Ced ¼ fi � 1
2
ed : i 2 Cg, where

ed is the unit vector in the d direction. Ced is the discrete set that indexes the faces of the cells in C whose

normals are ed
Aiþ1
2
ed ¼ ½ði þ edÞh; ði þ uÞh�; i þ 1

2
ed 2 Ced . ð3Þ
We define cell-centered discrete variables on C
/ : C ! Rm.
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We denote by /i 2 Rm the value of / at cell i 2 C. We can also define face-centered vector fields on C
~F ¼ ðF 0; . . . ; F D�1Þ; F d : C
ed ! Rm.
We can define a discretized divergence operator on such a vector field.
ðD �~F Þi ¼
1

h

XD�1

d¼0

ðF d;iþ1
2
ed � F d;i�1

2
ed Þ; i 2 C. ð4Þ
In order to obtain fourth-order accurate finite volume methods, it is necessary to distinguish between point

values at cell and face centers, and the averages over cells and faces. If w ¼ wð~xÞ, then we denote the point

values at cell centers by wi ¼ wðði þ 1
2
uÞhÞ and at face centers by wiþ1

2
ed ¼ wðði þ 1

2
ðuþ edÞÞhÞ, and the cor-

responding averages by
cell average: hwii ¼
1

hD

Z
V i

w dV; ð5Þ

face average: hwiiþ1
2
ed ¼

1

hD�1

Z
A
iþ1

2
ed

w dA. ð6Þ
The point values and averages are related to each other as follows:
hwii ¼ wi þ h2

24
DwþOðh4Þ; ð7Þ

hwiiþ1
2
ed ¼ wiþ1

2
ed þ h2

24
D?;dwþOðh4Þ; ð8Þ
where D?;dw ¼
P

d 0 6¼d
o2w
ox2

d0
, and the derivatives are evaluated at the cell and face center, respectively. We also

denote by D2
d the centered second-difference operator in the d coordinate direction.
ðD2
dwÞi �

1

h2
wiþed � 2wi þ wi�ed

� �
¼ o2w

ox2d
þOðh2Þ. ð9Þ
3. Finite-volume formulation of Mehrstellen discretizations

It follows from (1) and the divergence theorem that
hqii ¼
1

h

XD�1

d¼0

o/
oxd

� �
iþ1

2
ed
� o/

oxd

� �
i�1

2
ed

 !
. ð10Þ
This exact relationship is the starting point for finite-volume discretizations of (1). We approximate the

average of the fluxes to fourth-order accuracy by approximating the derivative by a finite difference then

using Eq. (8) to approximate the average over the face,
o/
oxd

� �
iþ1

2
ed
¼ 1

h
ð/iþed � /iÞ �

h2

24

o
3/
ox3d

þ h2

24
D?;d o/

oxd

� �
þOðh4Þ. ð11Þ
In order to evaluate the third derivative in a compact fashion to O(h2), we use Eq. (1) and substitute
o
2/
ox2d

¼ q� D?;d/ ð12Þ
into Eq. (11). This substitution yields
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o/
oxd

� �
¼ 1

h
ð/iþed � /iÞ þ

h2

24
D?;d o/

oxd

� �
� o

oxd
q� D?;d/
� �� �

þOðh4Þ. ð13Þ
This leads to the following fourth-order accurate finite-volume discretization:
hqii ¼ðD �~F /Þi �
h2

24
ðD �~F qÞi; ð14Þ

¼L4ð/Þi �
h2

24
L2ðqÞi; ð15Þ
where away from boundaries, we have
F /
iþ1

2
ed
¼ 1

h
/iþed þ

h2

12
ðD?;d

2 /Þiþed

� �
� /i þ

h2

12
ðD?;d

2 /Þi
� �� �

; ð16Þ

F q
iþ1

2
ed
¼ 1

h
ðqiþed � qiÞ; ð17Þ
with D?;d
2 ¼

P
d 0 6¼dD

2
d 0 .

It is convenient to express the operators L2 and L4 in terms of finite difference stencils away from domain

boundaries. In both two and three dimensions, L2q ¼
P

dD
2
dq. For L

4, we have in two dimensions,
L 4φ =
1

6h2

1 4 1

4 -20 4

1 4 1

φ ð18Þ
and in three dimensions,
L 4φ =
1

6h2

0 1 0

1 2 1

0 1 0

1 2 1

2 -24 2

1 2 1

0 1 0

1 2 1

0 1 0

φ ð19Þ
If we utilize Eq. (7) in combination with Eq. (15) we obtain the classical Mehrstellen method,
ðL4/Þi ¼ qi þ
h2

12
ðL2qÞi. ð20Þ
3.1. Domain boundary conditions

For periodic boundary conditions, we extend the solution to the required ghost cells using periodic

images of the solution. For Dirichlet boundary conditions, we use cell centered ghost values for computing

fluxes. For the value of / in a ghost cell that shares a face with a cell in the computational domain, we

extrapolate using a quartic polynomial that matches the first four cells in the normal direction, plus the

value on the Dirichlet boundary (Fig. 1).
/G ¼ 1

35
128/B � 140/0 þ 70/1 � 28/2 þ 5/3½ �. ð21Þ
To fill in the remaining values of / needed at corners (2D) or edges (3D), we extrapolate from the two co-

ordinate directions using a quartic polynomial that matches the five adjacent ghost values in each of two

coordinate directions, and average the results.
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Fig. 1. Domain boundary conditions.
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/0 ¼ 5/1 � 10/2 þ 10/3 � 5/4 þ /5. ð22Þ

In the case of Neumann boundary conditions, the boundary data is assumed to be specified directly as FB,

an O(h4) value for the average of the flux over the face.
F /
i0þ1

2
ed
� h2

24
F q

i0þ1
2
ed
¼ F B

i0þ1
2
ed
¼ o/

oxd

� �
i0þ1

2
ed
þOðh4Þ;
where i0 þ 1
2
ed is a face on the boundary. In that case it is arbitrary to which component of the boundary

flux, F/ or � h2

24
F q, that FB is assigned to. For example, one can set F/ on the boundary to zero, and set

� h2

24
F q ¼ F B. We also need to set ghost values for / that are required to compute fluxes on interior faces.

For a value of / in a ghost cell that shares a face with a cell in the computational domain, we extrapolate
using a quartic polynomial that matches the first four cells in the normal direction plus a O(h4) value for the

normal derivative at the center of the face.
/G ¼ 1
22

�24h/xd ;B þ 17/0 þ 9/1 � 5/2 þ /3

� �
. ð23Þ
The remaining values at the corners are filled in exactly as in the Dirichlet case.
4. Local refinement discretization

In this section we describe the extension of the Mehrstellen algorithm given above to the case of a locally

refined grid. Our approach will be to express the locally refined discretizations in terms of the corresponding

uniform grid discretizations at each level. An appropriate interpolation operator provides ghost cell values

for points in the stencil extending outside of the grids at that level. We will also define a conservative

discretization of the divergence operator on multilevel data.
We define a coarsening operator by Cr : Z

D ! ZD,
CrðiÞ ¼
i0
r

	 

; . . . ;

id�1

r

	 
� �
;

where r is a positive integer. These operators acting on subsets of ZD can be extended in a natural way to the

face-centered sets: CrðCed Þ � ðCrðCÞÞe
d

. We use a finite-volume discretization of space to represent a nested

hierarchy of grids that discretize the same continuous spatial domain. We assume that our problem domain

can be discretized by a nested hierarchy of grids C0 . . .Clmax, with Clþ1 ¼ C�1
nl
ref
ðClÞ. and that the mesh
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spacings hl associated with Cl satisfy hl=hlþ1 ¼ nlref . The integer n
l
ref is the refinement ratio between level l and

l + 1. These conditions imply that the underlying continuous spatial domains defined by the control volumes

are all identical. In this paper we will further assume nlref is even and no less than 4. For any set � ˝ Cl, we

define Gð� ; rÞ, r > 0, to the set of all points within a |Æ|-distance r of � that are still contained in Cl
Gð� ; rÞ ¼ Cl \ [
jij6r

� þ i;
where jij ¼ max
d¼0...D�1

ðjid jÞ, We can extend the definition to the case r < 0
Gð� ; rÞ ¼ Cl � GðCl � � ;�rÞ.

Thus Gð� ; rÞ consists of all of the points in � that are within a distance �r from points in the complement

of � in Cl. In the case that there are periodic boundary conditions in one or more of the coordinate direc-

tions, we think of the various sets appearing here and in what follows as consisting of the set combined with
all of its periodic images for the purpose of defining set operations and computing ghost cell values. For

example, Gð� ; rÞ is obtained by growing the union of � with its periodic images, and performing the inter-

sections and differences with the union of Cl with its periodic images.

We make two assumptions about the nesting of grids at successive levels. We require the control volume

corresponding to a cell in Xl � 1 is either completely contained in the control volumes defined by Xl or its

intersection has zero volume. We also assume that there is at least 2nlref level l cells separating level l + 1 cells

from level l � 1 cells: GðCnl
nref
ðXlþ1Þ; 2nlrefÞ � Xl. We will refer to grid hierarchies that meet these two con-

ditions as being properly nested. This is a much more restrictive notion of proper nesting than is typically
used for second-order finite-volume methods, but is imposed to simplify the coarse–fine interpolation

process.

From a formal numerical analysis standpoint, a solution on a locally refined mesh hierarchy fXlglmax

l¼0

approximates the exact solution to the PDE only on those cells that are not covered by a grid at a finer

level. We define the valid region of Xl as,
Xl
valid ¼ Xl � Cnl

ref
ðXlþ1Þ.
A composite array wcomp is a collection of discrete values defined on the valid regions at each of the levels of

refinement.
wcomp ¼ fwl;validglmax

l¼0 ; wl;valid : Xl
valid ! Rm.
We can also define valid regions and composite arrays for face-centered variables. Xl;ed

valid ¼ Xl;ed�
Cnl

ref
ðXlþ1;ed Þ. Thus, Xl,ed

valid consists of d-faces that are not covered by the d-faces at the next finer level.

A composite vector field ~F
comp ¼ f~F l;validglmax

l¼0 is defined as follows:
~F
l;valid ¼ ðF l;valid

0 . . . F l;valid
D�1 Þ; F l;valid

d : Xl;ed

valid ! R.
Thus a composite vector field has values at level l on all of the faces not covered by faces at the next finer

level.

We want to define a composite divergence Dcompð~F lþ1;valid
; ~F

l;validÞi for i 2 Xl
valid. To do this, we construct

an extension of ~F
l;valid

to the edges adjacent to Xl
valid that are covered by fine level faces. On the valid coarse-

level d-faces, F l
d ¼ F l;valid

d . On the faces adjacent to cells in Xl
valid, but not in Xl;ed

valid, we set F
l
d ¼ hF lþ1;valid

d i, the
average of F lþ1

d onto the next coarser level.
hF lþ1
d iicþ1

2
ed ¼

1

ðnrefÞD�1

X
iþ1

2
ed2Fd

F lþ1

d;iþ1
2
ed
; ic þ 1

2
ed 2 flþ1

d;þ [ flþ1
d;� .
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Here, Fd is the set of all fine level d-faces that are covered by Aicþ1
2
ed . f

lþ1
d;� consists of all the d-faces in Xl on

the boundary of Xl + 1, with valid cells on the low (± = �) or high (± = +) side.
flþ1
d;� ¼ fi � 1

2
ed : i � ed 2 Xl

valid; i 2 Cnref ðX
lþ1Þg.
Given that extension, our composite divergence is defined
DcompðF lþ1;valid; F l;validÞi ¼ D �~F l

i ; i 2 Xl
valid. ð24Þ
It is useful to express Dcomp as an application of the level divergence operator D applied to extensions of
~F

l;valid
to the entire level, followed by a step that corrects the cells in Xl

valid that are adjacent to Xl + 1. We

define a flux register d~F
lþ1

associated with the fine level:
d~F
lþ1 ¼ ðdF lþ1

0 ; . . . ; dF lþ1
D�1Þ;

dF lþ1
d : flþ1

d;þ [ flþ1
d;� ! Rm.
Let ~F
l
be any coarse level vector field that extends ~F

l;valid
, i.e.
F l
d ¼ F l;valid

d on Xc;ed

valid.
Then for i 2 Xl
valid,
Dcompð~F lþ1;valid
; ~F

l;validÞi ¼ ðD~F lÞi þ DRðd~F
lþ1Þi. ð25Þ
Here d~F
lþ1

is a flux register, set to be
dF lþ1
d ¼ hF lþ1

d i � F l
d on fld;þ [ fld;�.
DR is the reflux divergence operator, given by the following for valid coarse level cells adjacent to Xl + 1:
DRðd~F
lþ1Þi ¼

1

hl
XD�1

d¼0

X
�¼þ;�:
i�1

2
ed2flþ1

d;�

�dF lþ1

d;i�1
2
ed
.

For the remaining cells in Xl
valid;DRðd~F

lþ1Þ is defined to be identically zero.

We can now define our Mehrstellen discretization of (1) on a locally refined grid as follows. On each

level, we compute /l,ext on GðXl; 1Þ � GðCnl
ref
ðXlþ1Þ;�2Þ such that /l,ext = /l,valid on Xl

valid. For i 2 Xl
valid,

we define:
Lcomp;4ð/comp; qcompÞi � ðD �~F /;lÞi þ DRðd~F
/;lþ1Þi; ð26Þ

Lcomp;2ðqcompÞi � ðD �~F q;lÞi þ DRðd~F
q;lþ1Þi ð27Þ
Here F/,l, F/,l + 1 are computed by applying (16) to /l,ext, /l + 1,ext, combined with the problem domain

boundary conditions. As we will see, the extensions of /l, /l + 1 depend linearly on ql, ql + 1, a dependence
which is explicitly denoted in (26). Fq,l, Fq,l + 1 are computed similarly, using the second-order extensions of

ql, ql + 1 described in [6].

We define Mehrstellen discretization of (1) as follows:
Lcomp;4ð/comp; qcompÞi ¼ hqlii þ
ðhlÞ2

24
Lcomp;2ðqcompÞi; i 2 Xl

valid; ð28Þ
where Æqæi is some O(h4) accurate estimate of the average of the density. In computations presented here, we

have taken hqii ¼ qi þ h2

24
Lcomp;2ðqÞi, where qi is the value of the density at the cell center.
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We note that the form of the equations given here leads to the following necessary conditions for solv-

ability for the case of all periodic or Neumann boundary conditions:
X
l

X
i2Xl

valid

ðhlÞDhqili ¼
X
l

X
d

X
iþ1

2
ed2Bl

d

ðhlÞD�1F B
iþ1

2
ed

ðNeumannÞ;

¼0 ðperiodicÞ.
For the Neumann case, Bl
d are the faces in the d direction on the intersection of the level valid cells with the

domain boundary, and FB are the specified face averages of the fluxes on the boundary. And while we have

no proof of this, numerical experiments seem to indicate that these conditions are also sufficient.

4.1. Coarse–fine interpolation

To complete the definition of the discretization, we need to specify how we compute the extended values
of / at each level. We do this in two steps. First, we specify the calculation of the extended values on cells

covered by the next finer level. Then, given that extension of the data on Xl � 1, we can compute the ghost

cell values on GðXl; 1Þ � Xl.

4.1.1. Coarsening

We need to compute /l � 1,ext at coarse cell centers in areas where we do not have valid coarse data. In

Fig. 2, the large open circles in the fine-grid region indicate where we need to coarsen from the fine cell data

onto the coarse grid. These are needed either to evaluate the valid coarse-grid fluxes, or to perform inter-
polation from the coarse grid to obtain fine grid ghost cell values. To do this we employ a sixth-order accu-

rate coarsening procedure to the fine data. For this coarsening procedure we use Taylor expansions based

on valid fine data and substitute (1) to maintain a compact stencil.

For w : Xl ! R, we define hwið2Þ : Cnref ðX
lÞ ! R to be the coarsening of w from a 2D-sized block of fine

cells centered at ðic þ 1
2
uÞhc
hwið2Þic
� 1

2D

X
s:sd¼0;1

wnref ðicþ1
2
uÞ�s. ð29Þ
Fig. 2. Coarse–fine interpolation.



M. Barad, P. Colella / Journal of Computational Physics 209 (2005) 1–18 9
If wi ¼ wðði þ 1
2
uÞhÞ, based on Taylor expansions we have the following approximation result:
hwið2Þic
¼ wððic þ 1

2
uÞhcÞ þ h2

8
Dwþ h4

384
DDwþ 4

X
06d1<d2<D

wxd1 xd1 xd2 xd2

 !
þOðh6Þ; ð30Þ
where all of the derivatives are evaluated at ðic þ 1
2
uÞhc. Applying (30) to / and using (1), we obtain the

following formula:
h/lið6Þic
� h/lið2Þic

� h2

8
hqlið2Þic

� h2

8
hDqlið2Þic

� �
� h4

384
hDqlið2Þic

þ 4
X

06d1<d2<D

h/l
xd1 xd1 xd2 xd2

ið2Þ
 !

¼ / ðic þ 1
2
uÞh

� �
þOðh6Þ; ð31Þ
where the derivatives on the fine grid are replaced by second-order accurate finite differences:

D !
P

dD
2
d ; o

2
xd1
o
2
xd2

! D2
d1
D2

d2
.

Given / defined on valid fine cells, we define on extended values on the region covered by the fine grid as

follows:
/l�1;ext
i ¼ h/lið6Þi ; i 2 Cnl�1

ref
ðXlÞ � GðCnl�1

ref
ðXlÞ;�2Þ. ð32Þ
We note that the stencils for the extended values at a coarse cell are contained entirely in the fine cells cov-

ered by that coarse cell, provided that nref P 4.

4.1.2. Interpolation

We use an O(h5) interpolation procedure to compute /l,ext on GðXl; 1Þ � Xl. This is done in two steps, as

seen in Fig. 2. First, we compute an O(h5) interpolant in the direction tangent to the coarse–fine boundary,

at the locations indicated by the ·�s. This uses all the values within a |Æ|-distance two in the plane parallel to
the boundary. In Fig. 2, this corresponds to five of the coarse cell centers indicated by large open circles:

one at the center, and two on either side. If any of these cells are covered by the next-finer grid, the coarse-

grid values (32) are used. The tangentially interpolated values are used with four points on the fine grid

(indicated by the small open circles) to interpolate the values at the ghost cell locations (indicated by the

open boxes).

In two dimensions, the tangential interpolation is done using a quartic polynomial. For a refinement ra-

tio of four, the interpolation formulae are given as follows (see Fig. 3):
/X
C ¼ 1

32768
315/l�1

1 � 2380/l�1
2 þ 32130/l�1

3 þ 3060/l�1
4 � 357/l�1

5

� �
; ð33Þ

/X
D ¼ 1

32768
715/l�1

1 � 4940/l�1
2 þ 27170/l�1

3 þ 10868/l�1
4 � 1045/l�1

5

� �
. ð34Þ
The other two points (A and B) use the same formula, but with the order of the input coarse-grid values

reversed. In three dimensions, the interpolation in the plane is done as a tensor product of the quartic inter-

polation above. The interpolation formula (33) is used in one coordinate direction to compute five coarse-

grid values in each of nlref 1D stencils in the other coordinate direction. We then apply (33) in the second

coordinate direction to obtain the required values.
      1                         2                        3                         4                         5

 x    x     x    x

A    B    C   D

...
...

..

...
...

..

...
...

..

Fig. 3. Quartic interpolation parallel to the coarse–fine interface.
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The values at the ghost cells are then obtained using a 1D quartic interpolant (see Fig. 4). For a refine-

ment ratio of four, the formula is given as follows:
/l;ext
i ¼ 1

1155
128/X

1 þ 2772/l
2 � 2970/l

3 þ 1540/l
4 � 315/l

5

� �
. ð35Þ
For coarse–fine interface ghost cell corners where we can interpolate coming from different directions (see

the far left open square in Fig. 2), we average the different interpolations. To obtain the remaining corner/

edge ghost cells (see the triangle in Fig. 2), we interpolate using our new ghost values (see the solid squares

in Fig. 2). For this interpolation we simply extend quartic polynomials through 5 ghost points (per direc-

tion), and average results coming from different directions. The resulting corner/edge ghost points (the tri-

angles) depend on both fine and coarse values, as the ghost points used (the solid squares) are derived from
surrounding coarse and fine values.
5. Locally refined multigrid algorithm description

In order to solve the system (28) using a geometric multigrid algorithm for linear systems, we need to

eliminate the dependence of L4 on qcomp. We define Mcomp,4(/comp) ” Lcomp,4(/comp,qcomp ” 0):
M comp;4ð/compÞ ¼ gl;

¼ hqlii þ
ðhlÞ2

24
Lcomp;2ðqcompÞi � Lcomp;4ð/comp � 0; qcompÞ.

ð36Þ
The system (36) is a linear system for /comp.
    5                         4                         3                        2                                                                 1i

Fig. 4. Quartic interpolation normal to the coarse–fine interface.

Fig. 5. Recursive relaxation procedure.
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We also define the operator Mnf is a two-level discretization of the Mehrstellen Laplacian:
Mnf ð/l;/l�1;validÞ ¼ L4ð/l;ext;0Þ; ð37Þ

/l : Xl ! R; ð38Þ

where /l,ext,0 = /l on Xl, and is otherwise given by the interpolation procedure in Section 4.1, but with ql,
ql � 1 ” 0.

We solve (36) using the approach in [5,8] It is similar to the algorithm used in [9] to compute steady

incompressible flow, and has been used in a variety of settings [2,10–12].
A pseudo-code description of the algorithm is given in Figs. 5 and 6. In multigrid we use standard con-

servative averaging and piecewise constant interpolation operators, Average and Ipwc, as in [6]:

AverageðuÞic ¼ 1

2d

P
i2C�1

2
ðicÞui and IpwcðuÞif ¼ ui; where i ¼ C2ðif Þ.

The smoothing operator mgRelax (/f,Rf,r) performs a multigrid V-cycle iteration on /f for the operator

Mnf, assuming the coarse-grid values required for the boundary conditions are identically zero. Within

mgRelax () our smoother is weighted Jacobi, which we apply twice per smooth (in Fig. 5 we set

NumSmoothDown = NumSmoothUp = 2).
Fig. 6. Pseudo-code description of the locally refined multigrid algorithm.
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6. Convergence of the algorithm

We have selected four test problems to both demonstrate the algorithm, and illustrate fourth-order con-

vergence. The first and third problems are in two dimensions, while the other two are three dimensional

problems. For all problems we use local refinement, and for some we compare with single grid versions
and/or second-order methods. We chose three problems with analytic solutions, and one classic problem

from fluid dynamics. For the first three problems we compute errors. We compute the truncation error by,
scomp ¼ gcomp �M comp;4ð/comp;exactÞ ð39Þ

and solution error as,
ecomp ¼ /comp;exact � /comp. ð40Þ

We can then compute p-norms as follows:
kekp ¼
X
l

X
i2Xl

valid

jeijpðhlÞD
0
@

1
A

1=p

. ð41Þ
Details of the test problems are given in the following sub-sections.

6.1. Problem 1

This first test problem has a doubly periodic, unit square solution domain. Our exact solution is,
/ ¼ sinð2pxÞ sinð2pyÞ; ð42Þ

q ¼ �8p2 sinð2pxÞ sinð2pyÞ. ð43Þ

In Fig. 7 we specify the disjoint boxes that define the refinement region for this problem. We solved (1)

for /, given (43) using a number of different methods. First we computed the solution using our second-

order accurate local refinement solver, and then with our fourth-order accurate local refinement solver.
Results from these runs are shown in Table 1. The expected convergence rates are apparent for these

tests. We achieved second-order solution error (first-order accurate truncation error not shown) for

the second-order method. For the fourth-order method we achieved fourth-order accuracy for solution

error and third-order for truncation error. Note the tremendous difference in magnitude of the error

(fourth compared to second), even for the coarsest grids.

Subsequently, we tested the effect of lowering the accuracy of the coarse–fine interpolation on the

fourth-order accurate method. For this test we first used a quadratic interpolant tangential to the inter-

face with a quartic interpolant normal to the interface. Results for this are shown in Table 2. This first
alteration lowered the truncation error to first-order accurate due to the quadratic interpolation, which

yields third-order accurate solution error. Our second test was to use a quartic interpolant tangential to

the interface and a cubic interpolant normal to the interface. Results are shown in Table 2. This second

alteration lowered the truncation error to second-order accurate due to the cubic interpolation, which

yielded a fourth-order accurate solution error. While this second alteration yielded a fully fourth-order

accurate solution error, the norms of the solution error were degraded in magnitude.

6.2. Problem 2

For this second test problem we illustrate our capability to achieve fourth-order accuracy for three dimen-

sional problems. The following expression is what we used for this doubly periodic, unit domain, test problem:
/ ¼ sinð2pxÞ sinð2pyÞ sinð2pzÞ. ð44Þ
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Fig. 7. Grid layout for Problem 1.

Table 1

Test Problem 1: / = sin(2px) sin (2py), solution and truncation errors with convergence rates

Base grid h = 1/64 Rate 1/128 Rate 1/256 Rate 1/512

(a) Second-order method, 2 refinement levels (2D), quadratic coarse–fine interpolation

L1 Solution 1.075e�04 2.024 2.644e�05 2.011 6.562e�06 2.005 1.635e�06

L2 Solution 1.278e�04 2.031 3.129e�05 2.013 7.751e�06 2.006 1.929e�06

L1 Solution 2.306e�04 2.079 5.457e�05 2.036 1.330e�05 2.017 3.286e�06

(b) Fourth-order method, 2 refinement levels (2D), quartic coarse–fine interpolation

L1 Solution 1.361e�07 4.003 8.490e�09 4.001 5.302e�10 4.001 3.312e�11

L2 Solution 1.672e�07 4.001 1.044e�08 4.001 6.523e�10 4.001 4.075e�11

L1 Solution 3.182e�07 4.014 1.970e�08 4.004 1.228e�09 4.004 7.652e�11

L1 Truncation 4.303e�04 2.994 5.402e�05 2.997 6.768e�06 2.997 8.476e�07
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Again this results in an analytic form for q (given Eq. (1)). For this problem we use the same box layout as

in problem 1, except in the third dimension the boxes range from 3/8 to 5/8. Results from this test problem

are presented in Table 3.

The results are still clearly fourth-order accurate.
6.3. Problem 3

For this test problem we present two dimensional solutions with inhomogeneous Dirichlet boundary
conditions. The following expressions are what we used for this unit domain test problem:



Table 2

Test Problem 1: / = sin(2px) sin (2py), solution and truncation errors with convergence rates

Base grid h = 1/64 Rate 1/128 Rate 1/256

(a) 2 Refinement levels (2D), coarse–fine interpolation with quadratic tangential and quartic normal to interface

L1 Solution 7.641e�07 3.053 9.204e�08 3.012 1.141e�08

L2 Solution 1.060e�06 3.040 1.289e�07 3.010 1.600e�08

L1 Solution 1.245e�05 2.857 1.719e�06 2.905 2.295e�07

L1 Truncation 3.718e�01 0.996 1.864e�01 0.999 9.324e�02

(b) 2 Refinement levels (2D), coarse–fine interpolation with quartic tangential and cubic normal to interface

L1 Solution 1.403e�07 4.024 8.623e�09 4.012 5.346e�10

L2 Solution 1.727e�07 4.025 1.061e�08 4.013 6.574e�10

L1 Solution 4.656e�07 3.962 2.987e�08 3.982 1.891e�09

L1 Truncation 9.258e�03 2.083 2.185e�03 2.046 5.290e�04

Lower order coarse–fine interpolation.

Table 3

Test Problem 2: / = sin(2px) sin(2py) sin (2pz), solution and truncation errors with convergence rates

Base grid h = 1/8 Rate 1/16 Rate 1/32

(a) 2 Refinement levels (3D)

L1 Solution 5.803e�04 3.525 5.042e�05 4.027 3.093e�06

L2 Solution 8.320e�04 3.610 6.815e�05 3.997 4.268e�06

L1 Solution 2.375e�03 3.595 1.966e�04 3.964 1.260e�05

L1 Truncation 3.180e�01 2.256 6.657e�02 2.904 8.896e�03
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/ ¼
r10

100a8 � 4r9

81a7 þ 3r8

32a6 � 4r7

49a5 þ r6

36a4 ; r < a;

a2

1260
ðlnðrÞ � lnðaÞ þ 1627

2520
Þ; r P a;

(
ð45Þ

q ¼
ðra � ðra Þ

2Þ4; r < a;

0; r P a;

(
ð46Þ
where r is the radius and we set a = 0.06. The grid layout for this problem was a simple square refinement

patch nested within the coarse level. For example, on a 2 level run we used a 256 · 256 cell base grid with

h = 1/256, and a centered refined patch of 256 · 256 cells with h = 1/1024. Results from this test problem are

presented in Table 4. We also present solution errors for a locally refined run and the equivalent single grid

run in Figs. 8 and 9. Inspection of Table 4 reveals fourth-order accuracy. Table 4 also shows approximately

equivalent error magnitude for locally refined vs. single grid (with equivalent finest resolution), even though
the locally refined computations used eight times fewer computational cells.
6.4. Problem 4

For this last problem we evaluate the performance of the algorithm for a complex three dimensional

problem. This test problem is based on a co-rotating vortex ring problem from fluid dynamics. The

right-hand side is specified as two rings modulated by a sin () function, in a periodic, unit cube domain.

Each modulated ring is specified by a location of the center of the ring (x0, y0, z0), the radius of



Fig. 8. Problem 3: contour plot of the solution error for a h = 1/1024 single grid run.

Table 4

Test Problem 3: solution errors and convergence rates

Base grid h = 1/128 Rate 1/256 Rate 1/512

(a) 2 Refinement levels (2D)

L1 Solution 3.53e�014 4.185 1.94e�015 4.290 9.92e�017

L2 Solution 9.02e�014 3.868 6.18e�015 4.130 3.53e�016

L1 Solution 1.48e�012 3.817 1.05e�013 4.075 6.23e�015

Base grid h = 1/512 Rate 1/1024 Rate 1/2048

(b) Single level (2D)

L1 Solution 3.24e�014 4.705 1.24e�015 4.775 4.54e�017

L2 Solution 8.55e�014 4.126 4.90e�015 4.040 2.98e�016

L1 Solution 1.64e�012 4.111 9.49e�014 3.989 5.98e�015
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the center of the local cross-section of the ring from the center of the ring r, and the strength of the

ring C.
The cross-sectional charge distribution in each modulated ring is given by
qðb; hÞ ¼ sinðhÞ C
ar2

e�
b
rð Þ3 ; ð47Þ
where b is the local distance from the center of the ring cross-section, h is the angle around the ring,

a = 2268.85, and r = 0.0275.

For this problem, the first modulated ring is centered at (0.5,0.5,0.4), with a radius of 0.2, and strength C
of 1.5. The second modulated ring is centered at (0.5,0.5,0.65), with a radius of 0.25 and a strength C = 1.0.



Fig. 9. Problem 3: contour plot of the solution error for a 2 level run (h = 1/256, h = 1/1024). The black box indicates the finer level.
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Results from running this test problem at different resolutions, see Fig. 10, show that the method obtains

residual reductions typical of multigrid. Also note that the method exhibits desired solvability characteris-

tics, and reduces the residual by a constant factor until the stopping threshold is met. In Fig. 11 we have

isolated the charge distribution q, by isosurfacing two equal valued regions. We slice through the solution

with a plane that is colored by the solution, /. The slicing plane also illustrates the individual computa-
tional cells from the 3 level refinement hierarchy used in the solve. We hope that this illustrates our capa-

bility to solve Poisson�s equation for real problems.
7. Conclusions and future research

We have presented a new block-structured local refinement algorithm for Poisson�s based on a finite-

volume formulation of classical Mehrstellen discretization of the Laplacian, and extended to locally re-
fined meshes using the ideas in [4,6]. The truncation error of the method is O(h4) except near boundaries

between refinement levels, where it is O(h3). Modified-equation analysis suggests that the solution error

is O(h4) uniformly, a result that is consistent with observed convergence of the method. We also ob-

served a somewhat surprising superconvergence phenomenon. Even if we use an O(h4) interpolant at

the boundary, we still obtain O(h4) solution error, even though the truncation error near the boundary

is O(h2).

The approach described here suggests a broader program for higher-order locally refined methods. The

quadrature formulas (7) and (8) provide a systematic mechanism for distinguishing between averages over
cells, averages over faces, and point values, to fourth-order accuracy. This can be combined with the ideas

in [13] to obtain fourth-order in space finite-volume discretizations for nonlinear hyperbolic problems on a

locally refined grid. It is not obvious how to extend the Mehrstellen discretizations to the case where the

right-hand side includes a time derivative, particularly in the case where implicit differencing in time is re-

quired. We will be considering a variety of possible approaches here, including fully implicit methods and



Fig. 10. Problem 4: plot of the 1-norm of the residual versus multigrid iteration.

Fig. 11. Problem 4: 3D locally refined solution with isosurface of the right-hand side q and a slice colored by the solution /. We show

individual computational cells on the slice. The 3D boxes represent the disjoint union of rectangles ðXl
k ’sÞ.
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predictor-corrector approximations to such methods in which the Mehrstellen correction is treated explic-

itly. The approach outlined here is straightforward to pursue in conjunction with second-order accurate

temporal discretizations. However, the extension to higher order in time is still an active research issue

[14]. Finally, there is a possibility of extending this approach to complex geometries using embedded

boundary methods [7]. In this case, it would be necessary to compute higher moments of the intersections
between the irregular domain and the Cartesian grid.
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